Enhancing Patient Safety Event Reporting by K-nearest Neighbor Classifier
نویسندگان
چکیده
Data quality was placed as a major reason for the low utility of patient safety event reporting systems. A pressing need in improving data quality has advanced recent research focus in data entry associated with human factors. The debate on structured data entry or unstructured data entry reveals not only a trade-off problem among data accuracy, completeness, and timeliness, but also a technical gap on text mining. The present study suggested a text classification method, k-nearest neighbor (KNN), for predicting subject categories as in our proposed reporting system. Our results demonstrated the feasibility of KNN classifier used for text classification and indicated the advantage of such an application to raise data quality and clinical decision support in reporting patient safety events.
منابع مشابه
Comparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کاملNon-zero probability of nearest neighbor searching
Nearest Neighbor (NN) searching is a challenging problem in data management and has been widely studied in data mining, pattern recognition and computational geometry. The goal of NN searching is efficiently reporting the nearest data to a given object as a query. In most of the studies both the data and query are assumed to be precise, however, due to the real applications of NN searching, suc...
متن کاملHilbert Space Filling Curve (hsfc) Nearest Neighbor Classifier
The Nearest Neighbor algorithm is one of the simplest and oldest classification techniques. A given collection of historic data (Training Data) of known classification is stored in memory. Then based on the stored knowledge the classification of an unknown data (Test Data) is predicted by finding the classification of the nearest neighbor. For example, if an instance from the test set is presen...
متن کاملDiagnosis of Tempromandibular Disorders Using Local Binary Patterns
Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...
متن کاملInstance-Based Spam Filtering Using SVM Nearest Neighbor Classifier
In this paper we evaluate an instance-based spam filter based on the SVM nearest neighbor (SVM-NN) classifier, which combines the ideas of SVM and k-nearest neighbor. To label a message the classifier first finds k nearest labeled messages, and then an SVM model is trained on these k samples and used to label the unknown sample. Here we present preliminary results of the comparison of SVM-NN wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Studies in health technology and informatics
دوره 218 شماره
صفحات -
تاریخ انتشار 2015